Journal article
Ornithological Applications, 2022
APA
Click to copy
Shephard, N., Szczys, P., Moore, D. J., Reudink, M., Costa, J., .Bracey, A. M., … McKellar, A. (2022). Weak genetic structure, shared nonbreeding areas, and extensive movement in a declining waterbird. Ornithological Applications.
Chicago/Turabian
Click to copy
Shephard, N., P. Szczys, D. J. Moore, M. Reudink, J. Costa, A. M .Bracey, S. Lisovski, and A. McKellar. “Weak Genetic Structure, Shared Nonbreeding Areas, and Extensive Movement in a Declining Waterbird.” Ornithological Applications (2022).
MLA
Click to copy
Shephard, N., et al. “Weak Genetic Structure, Shared Nonbreeding Areas, and Extensive Movement in a Declining Waterbird.” Ornithological Applications, 2022.
BibTeX Click to copy
@article{n2022a,
title = {Weak genetic structure, shared nonbreeding areas, and extensive movement in a declining waterbird},
year = {2022},
journal = {Ornithological Applications},
author = {Shephard, N. and Szczys, P. and Moore, D. J. and Reudink, M. and Costa, J. and .Bracey, A. M and Lisovski, S. and McKellar, A.}
}
ABSTRACT Understanding population mixing, movements, and connectivity of populations is an important first step towards effective conservation, particularly for long distance migrants that are suffering the greatest population declines, as this allows researchers to recognize how populations may face different risks throughout the annual cycle. We combined population genetic and individual tracking data to quantify the genetic structure and full-cycle movements of the declining North American Black Tern (Chlidonias niger surinamensis). A total of 147 genetic samples were collected from 9 breeding colonies across the range (Maine, Ontario, Michigan, Iowa, Wisconsin, Nebraska, Saskatchewan, and Oregon), and 19 light-level geolocators were recovered from 3 colonies (Ontario, Michigan, and Saskatchewan). Our results demonstrated weak genetic structure, and tracking data demonstrated the use of shared nonbreeding areas between central (Saskatchewan) and eastern (Ontario and Michigan) breeding populations. Our tracking data also provide novel evidence of long-distance breeding dispersal (∼1,400 km between breeding locations across years) based on an individual tracked across multiple years, as well as short distance dispersal (∼2.5–57 km) based on new recovery locations of 6 tracked individuals. Our results are consistent with the hypothesis that the shared use of nonbreeding areas influences physical condition, timing of departure, and subsequent reproductive timing in such a way as to facilitate dispersal across the breeding range and contribute to weak genetic structure among breeding populations. This study is the first to explore population genetics and migration of North American Black Terns. Extensive movement of individuals may pose a challenge from a conservation perspective as important areas and habitats throughout the annual cycle may be difficult to predict, and future studies should build on our work via extensive mark-resight effort using color bands, tracking individuals from more breeding sites, and examining carry-over effects to further investigate when in the annual cycle populations are most limited. How to Cite Shephard, N. G., P. Szczys, D. J. Moore, M. W. Reudink, J. N. Costa, A. M. Bracey, S. Lisovski, and A. E. McKellar (2022). Weak genetic structure, shared nonbreeding areas, and extensive movement in a declining waterbird. Ornithological Applications 125:duac053. LAY SUMMARY Conserving migratory birds is challenging, as they often travel thousands of kilometers throughout the year and, for most species, we lack information on connections between breeding and wintering populations as well as movements of individuals on the breeding grounds from one year to the next (breeding dispersal).Yet understanding these movements is crucial as they shape the patterns of genetic variability within a species—information that directly impacts conservation management strategies. In studying North American Black Terns (Chlidonias niger surinamensis), a waterbird species in decline, we found small differences in genetic variability across the range, suggesting substantial mixing of individuals among breeding populations. Movement tracking of 19 individuals from Ontario, Michigan, and Saskatchewan revealed variation in migratory routes coupled with substantial mixing on the wintering grounds, as well as one case of long-distance (∼1,400km) breeding dispersal. Together, these findings indicate breeding dispersal and population mixing as mechanisms that limit genetic differentiation across the range, and suggest a potential challenge for conservation managers given that important locations and habitats for the species may be difficult to predict across years. RÉSUMÉ Comprendre le mélange, les mouvements et la connectivité des populations est une première étape importante vers une conservation efficace, en particulier pour les migrateurs de longue distance qui subissent les plus grands déclins de population, car cela permet aux chercheurs de reconnaître comment les populations peuvent être confrontées à différents risques tout au long du cycle annuel. Nous avons combiné des données de génétique des populations et de suivi des individus pour quantifier la structure génétique et les mouvements sur l'ensemble du cycle de Chlidonias niger surinamensis, une espèce en déclin. Un total de 147 échantillons génétiques a été recueilli dans 9 colonies nicheuses à travers l'aire de répartition (Maine, Ontario, Michigan, Iowa, Wisconsin, Nebraska, Saskatchewan et Oregon), et 19 géolocalisateurs légers ont été récupérés dans 3 colonies (Ontario, Michigan et Saskatchewan). Nos résultats ont démontré une faible structure génétique, et les données de suivi ont démontré l'utilisation de zones de non-reproduction partagées entre les populations nicheuses du centre (Saskatchewan) et de l'est (Ontario et Michigan). Nos données de suivi fournissent également de nouvelles preuves de dispersion sur de longues distances (∼1 400 km entre les lieux de reproduction d'une année à l'autre), d'après un individu suivi sur plusieurs années, ainsi que de dispersion sur de courtes distances (∼2,5-57 km), d'après les nouveaux lieux de récupération de six individus suivis. Nos résultats sont cohérents avec l'hypothèse selon laquelle l'utilisation partagée des zones de non-reproduction influence la condition physique, le moment du départ et le moment subséquent de reproduction de manière à faciliter la dispersion dans l'aire de reproduction et à contribuer à une faible structure génétique parmi les populations reproductrices. Cette étude est la première à explorer la génétique des populations et la migration de C. niger surinamensis. Les mouvements importants d'individus peuvent poser un défi du point de vue de la conservation, car les zones et les habitats importants tout au long du cycle annuel peuvent être difficiles à prévoir. Les études futures devraient s'appuyer sur nos travaux en déployant un effort important de marquage et de réobservation à l'aide de bagues de couleur, en suivant les individus à partir d'un plus grand nombre de sites de reproduction et en examinant les effets différés afin d'étudier plus en détail le moment du cycle annuel où les populations sont plus limitées.